首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
  国内免费   2篇
地质学   12篇
  2021年   1篇
  2018年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  1996年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
2.
The obduction of an ophiolite sheet onto the eastern Pelagonian carbonate platform complex of the Hellenides began during the Late Bathonian and ended with the final emplacement of the ophiolite during Valanginian time. The early stages of obduction caused subaerial exposure of the platform, recorded by an unconformity of Callovian age, which is marked by laterites overlying folded and faulted, karstic substrates. The laterites have distinct ophiolitic geochemical signatures, indicating that emergent ophiolite had been undergoing lateritic weathering. This unconformity coincides with widespread western Tethyan, Callovian gaps, indicating that the obduction in the Hellenides was probably related to far-reaching plate tectonic processes. Resumed gravitational pull and rollback of the subducted, oceanic leading edge of the temporarily exposed ophiolite. Platform drowning continued into Tithonian–Valanginian time, documented initially by reefal carbonates and then by below-CCD, carbonate-free radiolarian cherts and shales. Subsequently, siliciclastic turbidites, which apparently originated from uplifted Variscan basement, were deposited together with and over the radiolarite as the ophiolite nappe sheet advanced. The nappe substrate underwent tectonic deformations of varying intensity, while polymictic mélange and syntectonic sedimentary debris accreted beneath the ophiolite and at the nappe front. The provenience of the ophiolite nappe complexes of northern Evvoia most probably has to be looked for in the Vardar ocean.  相似文献   
3.
The offshore branch of the East African Rift System (EARS) has developed during Late Cenozoic time along the eastern Africa continental margin. While Neogene–Pleistocene extensional tectonic deformation has been evidenced along the northern segment of the Davie Ridge, the spatial extent of deformation further south remains poorly documented. Based on recent and various oceanographic datasets (bathymetric surveys, dredge samples and seismic profiles), our study highlights active normal faulting, modern east–west extensional tectonic deformation and Late Cenozoic alkaline volcanism at the Sakalaves Seamounts (18°S, Davie Ridge) that seem tightly linked to the offshore EARS development. In parallel, rift‐related tectonic subsidence appears responsible for the drowning of the Sakalaves Miocene shallow‐water carbonate platform. Our findings bring new insights regarding the development of the EARS offshore branch and support recent kinematic models proposing the existence of a plate boundary across the Mozambique Channel.  相似文献   
4.
Tunisia, Ukraine, Russia, the North Sea area and elsewhere have yielded knowledge that the Early Cretaceous planktonic foraminifera are predominantly members of the Praehedbergellidae. The taxonomy and phylogeny of this family have been revised and refined. New generic and specific taxa have been proposed, new phylogenetic lineages have been described, and many type specimens have been imaged by scanning electron microscopy for the first time.Gorbachikella(Hauterivian–Early Aptian) gave rise toPraehedbergella(Late Hauterivian–Late Aptian), evolvingBlefuscuiana,Lilliputianella, and the planospiralBlowiellain the Barremian. The last gave rise toGlobigerinelloidesin the Aptian, from which the macroperforateAlanlordella(and its descendantPlanomalina) evolved in the Albian.Blowiellawas ancestral to taxa with radially elongated chambers (Claviblowiella, Leupoldina, Schackoina).  相似文献   
5.
冈底斯弧前区域地层沉积记录,对新特提斯洋消亡和印度-亚洲碰撞过程的研究具有十分重要的意义。位于西藏南部札达地区的达机翁组,北邻冈底斯岩浆弧,南靠雅鲁藏布江缝合带。岩石组成主要包括砾岩、岩屑砂岩、泥页岩和灰岩等。沉积环境分析认为达机翁组形成于扇三角洲相环境。火山灰锆石U-Pb定年、碎屑锆石最年轻年龄以及底栖有孔虫化石组合共同约束达机翁组的形成时代为晚白垩世-始新世早期(即ca.73~49Ma)。物源区分析结果表明达机翁组物源类似于区域上分布的日喀则弧前盆地沉积,直接以北侧冈底斯岩浆弧为主要物质源区。通过与区域弧前沉积对比,为冈底斯弧前盆地海相地层时代提供制约,结果显示新特提斯洋在亚洲大陆南缘的弧前海退存在东西方向上的穿时性,即海水自东向西逐渐退出,并最终在~49Ma退出冈底斯-拉达克弧前区域。  相似文献   
6.
7.
8.
9.
Southern Cyprus is situated within a mosaic terrane that has been fragmented between the northward drifting African and Arabian plates and the Eurasian plate. Enormous uplift of the earth mantle in the Tróodos Mountains is explained by two models. The subduction model explains subduction along the Cyprean arc to be the driving force for uplift whereas after the restraining bend model westward squeezing of Cyprus along strike-slip faulting is responsible for the enormous uplift at restraining bends. Since its emergence as an island in early Miocene times, landscape formation on Cyprus has been strongly controlled by this uplift. Until the Plio-Pleistocene, a strait belt separated the southern unroofed ophiolitic core region-the Tróodos Mountains-from the folded Kyrenia range to the north. This former sea basin, nowadays the Mesaoría Basin, is linked with the Tróodos Mountains by a dissected glacis with a thick cover of river deposits. The highest and oldest river deposits (Apalós Formation) were studied in the Vlokkariá hill southwest of Lefkosía. The 45.5 m thick Apalós Formation of Early Pleistocene age exhibits 24 sedimentary units (Fluviatile Series). Their magnetostratigraphical characters align with the Matuyama chron including the Olduvai and Jaramillo subchrons thus comprising about 1.15 Ma within the Early Pleistocene. This fluvial stack indicates a very flat and deeply lying river environment flowing from a slowly uplifting Tróodos hinterland. It happened during the end of Early Pleistocene when the enhanced Tróodos uplift started the dissection of the stacked river plain.  相似文献   
10.
The Late Triassic and Jurassic platform and the oceanic complexes in Evvoia, Greece, share a complementary plate-tectonic evolution. Shallow marine carbonate deposition responded to changing rates of subsidence and uplift, whilst the adjacent ocean underwent spreading, and then convergence, collision and finally obduction over the platform complex. Late Triassic ocean spreading correlated with platform subsidence and the formation of a long-persisting peritidal passive-margin platform. Incipient drowning occurred from the Sinemurian to the late Middle Jurassic. This subsidence correlated with intra-oceanic subduction and plate convergence that led to supra-subduction calc-alkaline magmatism and the formation of a primitive volcanic arc. During the Middle Jurassic, plate collision caused arc uplift above the carbonate compensation depth (CCD) in the oceanic realm, and related thrust-faulting, on the platform, led to sub-aerial exposures. Patch-reefs developed there during the Late Oxfordian to Kimmeridgian. Advanced oceanic nappe-loading caused platform drowning below the CCD during the Tithonian, which is documented by intercalations of reefal turbidites with non-carbonate radiolarites. Radiolarites and bypass-turbidites, consisting of siliciclastic greywacke, terminate the platform succession beneath the emplaced oceanic nappe during late Tithonian to Valanginian time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号